Evaluating zinc isotope fractionation under sulfate reducing conditions using a flow-through cell and in situ XAS analysis

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carbon isotope fractionation during anaerobic degradation of methyl tert-butyl ether under sulfate-reducing and methanogenic conditions.

Methyl tert-butyl ether (MTBE), an octane enhancer and a fuel oxygenate in reformulated gasoline, has received increasing public attention after it was detected as a major contaminant of water resources. Although several techniques have been developed to remediate MTBE-contaminated sites, the fate of MTBE is mainly dependent upon natural degradation processes. Compound-specific stable isotope a...

متن کامل

Stable carbon isotope fractionation by sulfate-reducing bacteria.

Biogeochemical transformations occurring in the anoxic zones of stratified sedimentary microbial communities can profoundly influence the isotopic and organic signatures preserved in the fossil record. Accordingly, we have determined carbon isotope discrimination that is associated with both heterotrophic and lithotrophic growth of pure cultures of sulfate-reducing bacteria (SRB). For heterotro...

متن کامل

A revised isotope fractionation model for dissimilatory sulfate reduction in sulfate reducing bacteria

Sulfur isotope fractionation during dissimilatory sulfate reduction has been conceptually described by the widely accepted Rees model as related to the stepwise reduction of sulfate to sulfide within the cells of bacteria. The magnitude of isotope fractionation is determined by the interplay between different reduction steps in a chain of reactions. Here we present a revision of Rees’ model for...

متن کامل

Sulfurous Analysis of Bioelectricity Generation from Sulfate-reducing Bacteria (SRB) in a Microbial Fuel Cell

The current importance of energy emphasizes the use of renewable resources (such as wastewater) for electricity generation by microbial fuel cell (MFC). In the present study, the native sulfate-reducing bacterial strain (R.gh 3) was employed simultaneously for sulfurous component removal and bioelectricity generation. In order to enhance the electrical conductivity and provision of a compatible...

متن کامل

Sulfur isotope fractionation during the evolutionary adaptation of a sulfate-reducing bacterium.

Dissimilatory sulfate reduction is a microbial catabolic pathway that preferentially processes less massive sulfur isotopes relative to their heavier counterparts. This sulfur isotope fractionation is recorded in ancient sedimentary rocks and generally is considered to reflect a phenotypic response to environmental variations rather than to evolutionary adaptation. Modern sulfate-reducing micro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Geochimica et Cosmochimica Acta

سال: 2017

ISSN: 0016-7037

DOI: 10.1016/j.gca.2016.12.034